Si la velocidad de la luz nunca se puede exceder, ¿por qué el universo se expandió más rápido que la velocidad de los microsegundos de luz después del Big Bang?

En relatividad especial, la velocidad de la luz es el límite superior para las velocidades de los objetos con masa de reposo positiva, y los fotones individuales no pueden viajar más rápido que la velocidad de la luz. “Einstein llamó una vez a la velocidad de la luz El límite de velocidad del Universo, afirmó que viajar más rápido que la velocidad de la luz violaría el principio de causalidad”.

Momento y energía del fotón.

En 1906, Einstein asumió que los cuantos de luz (que luego se denominaron fotón) no tienen masa. Energía relativista E y momento P dado por;

Es posible que podamos permitir m = 0, siempre que la partícula siempre viaje a la velocidad de la luz c. En este caso, la ecuación anterior no servirá para definir E y P; ¿Qué determina el impulso y la energía de una partícula sin masa? No la masa (eso es cero por suposición); no la velocidad (eso siempre es c). La relatividad no ofrece respuesta a esta pregunta, pero curiosamente la mecánica cuántica sí, en la forma de la fórmula de Plank;

Como se desprende de la fórmula de masa relativista de Einstein:

Según la teoría general de la relatividad, la luz que se mueve a través de fuertes campos gravitacionales experimenta un cambio de rojo o azul. Durante la caída del fotón en el campo gravitacional, su energía (masa) aumenta. Según W = dmc ^ 2, la fuerza de gravedad realiza un trabajo sobre el fotón, por lo que la masa (energía) del fotón y su frecuencia aumenta (o disminuye) de v a v ‘la dada por;

G es la constante gravitacional; M es la masa del cuerpo, c es la velocidad de la luz, r es la distancia desde el centro de masa del cuerpo. El signo más se refiere al desplazamiento al azul y el signo menos se refiere al desplazamiento al rojo.

También en presencia de gravedad, la velocidad de la luz no es la misma para todos los observadores. La derivación de Einstein de la velocidad variable de la luz en un potencial de campo gravitacional de la siguiente manera:

Donde c es la velocidad de la luz en el vacío y c ‘es la velocidad de la luz en el campo gravitacional. Cabe señalar que no hay consenso sobre la velocidad de la luz en un campo gravitacional. Por ejemplo; entonces, en presencia de gravedad, la velocidad de la luz se vuelve relativa (variable según el marco de referencia del observador). Esto no significa que los fotones aceleren o desaceleren; esto es solo la gravedad, lo que hace que los relojes funcionen más lentamente y que las reglas se reduzcan. El problema aquí proviene del hecho de que la velocidad es una cantidad dependiente de coordenadas y, por lo tanto, es algo ambigua. Para determinar la velocidad (distancia recorrida / tiempo tomado) primero debe elegir algunos estándares de distancia y tiempo, y diferentes opciones pueden dar diferentes respuestas. Esto ya es cierto en la relatividad especial: si mide la velocidad de la luz en un marco de referencia acelerado, la respuesta, en general, diferirá de c. Basado en la solución de Schwarzschild de la ecuación de Einstein del campo gravitacional, se demuestra que la velocidad de la luz cambiaría y la isotropía de la velocidad de la luz sería violada en el campo gravitacional con simetría esférica.

La descripción anterior es compatible con el concepto puntual de la mecánica cuántica, pero es incompatible con nuevos enfoques y evidencias. En mecánica cuántica, el concepto de una partícula puntual se complica por el principio de incertidumbre de Heisenberg, porque incluso una partícula elemental, sin estructura interna, ocupa un volumen distinto de cero. De acuerdo con la mecánica cuántica de que el fotón y el electrón son partículas no estructuradas, no podemos responder las preguntas sin respuesta.

Con todo el esfuerzo realizado en las últimas décadas en QED, hay una pregunta fundamental que nunca se ha planteado o si se ha planteado (no hemos visto) se ignora. En la física moderna, una partícula cargada emite y absorbe energía, pero su mecanismo no se describe. Entonces la pregunta es; Si el fotón es una partícula no estructurada, con masa en reposo cero y sin carga eléctrica (y neutral), ¿cómo las partículas cargadas la absorben y la irradian? Hay muchos artículos que muestran que el fotón tiene un límite superior de masa y carga eléctrica, que son consistentes con las observaciones experimentales. Las teorías y experimentos no se han limitado a fotones y también se incluirán gravitones. Para la gravedad ha habido debates vigorosos sobre incluso el concepto de masa de reposo de gravitones.

En las últimas décadas, se discute la estructura del fotón y los físicos están estudiando la estructura del fotón. Alguna evidencia muestra que el fotón consiste en cargas positivas y negativas. Además, un nuevo experimento muestra que la probabilidad de absorción en cada momento depende de la forma del fotón, también los fotones tienen unos 4 metros de largo, lo que es incompatible con el concepto no estructurado.

Para estudiar y comprender la estructura del fotón, necesitamos describir la relación entre la frecuencia y la energía del fotón. El cambio de frecuencia del fotón en el campo gravitacional ha sido demostrado por el experimento Pound-Rebka. Cuando el fotón cae una distancia igual y hacia la tierra, de acuerdo con la ley de conservación de la energía tenemos:

Cargas de color y color magnético

Un fotón con la energía más baja posible también transporta campos eléctricos y magnéticos. Por lo tanto, las características de los gravitones ingresados ​​en la estructura del fotón deben comportarse de una manera que, junto con la explicación de la energía del fotón, describa el aumento en la intensidad de los campos eléctricos y magnéticos. En otras palabras, algunos de estos gravitones causan un aumento del campo eléctrico del fotón y otros gravitones aumentan la intensidad de los campos magnéticos. Además, no solo un fotón en el nivel más bajo de su energía está formado por algunos de los gravitones, sino que también sus miembros formados tienen propiedades eléctricas y magnéticas que se llaman carga de color y color magnético en la teoría CPH. El siguiente paso es especificar las cargas de color y los colores magnéticos en los que se obtiene prestando atención al menos al cambio en la energía del fotón en un campo gravitacional mientras se mueve hacia el cambio de gravedad azul.

Al producir campos eléctricos positivos y negativos, se forman dos campos magnéticos alrededor de los campos eléctricos que se forman. Por lo tanto, se harán dos grupos de colores magnéticos. Entonces la matriz CPH se define de la siguiente manera:

La matriz CPH muestra la energía de menor magnitud de un fotón.

Energía Sub-Cuántica (SQE)

Utilizamos la matriz CPH para definir energías sub cuánticas positivas y negativas de la siguiente manera: la primera columna de la matriz CPH se define energía sub cuántica positiva y la segunda columna de la matriz CPH se define energía sub cuántica negativa, entonces;

La cantidad de velocidad y energía de las energías sub cuánticas positivas y negativas son iguales, y la diferencia entre ellas solo está en el signo de sus cargas de color y dirección de flujo de color magnético.

Fotones virtuales

Hay dos tipos de fotones virtuales, fotones virtuales positivos y negativos que se definen de la siguiente manera:

Un fotón real está formado por un fotón virtual positivo y un fotón virtual negativo:

Allí, n y k son números naturales. Hasta ahora, la producción de energía electromagnética (fotones) se describió mediante el uso del desplazamiento azul gravitacional, en fenómenos inversos, los fotones se descomponen en fotones virtuales negativos y positivos. En el desplazamiento al rojo, los fotones virtuales también se descomponen en energías sub cuánticas positivas y negativas ( SQE s), y las energías sub cuánticas (SQE) también se descomponen en cargas de color y colores magnéticos. Las cargas de color y los colores magnéticos se separan, pierden su efecto entre sí y se convierten en gravitones. Además, existe una relación entre el número de SQEs en la estructura del fotón y la energía (también frecuencia) del fotón.

Entonces, los fotones son una combinación de fotones virtuales positivos y negativos. El fotón es un dipolo eléctrico muy débil que es consistente con la experiencia y se afirman estos artículos. Además, esta propiedad del fotón (dipolo eléctrico muy débil) puede describir la energía de absorción y emisión por partículas cargadas.

Principio de Graviton

Graviton es la unidad de energía más minúscula con masa constante m (G) que se mueve con una magnitud constante de velocidad V (G) de modo que V (G)> c, en todos los marcos de referencia inerciales. Cualquier interacción entre el gravitón y otras partículas existentes representa un momento de inercia I donde la magnitud de V (G) permanece constante y nunca cambia. Por lo tanto;

Basado en el principio de gravitón, la velocidad total de la velocidad de transmisión y la no transmisión de gravitón es constante. Además, la energía de transmisión total y la no transmisión de gravitón es constante, de modo que:

Como la masa y la velocidad del gravitón son constantes, su energía permanece constante y solo su energía de transmisión cambia a energía de no transmisión y viceversa. Los gravitones se combinan entre sí y producen grandes cantidades de cuantos de energía, y la energía se convierte en materia y antimateria. De hecho, todo se ha formado de gravitón. Este enfoque del gravitón nos ayuda a describir el vacío cuántico y generalizar las ecuaciones de Maxwell desde el electromagnetismo hasta el campo gravitacional.

Principio de energía sub-cuántica

Un SQE es una energía muy pequeña con NRP (partícula en condición de nunca en reposo) masa m (SQE)

que se mueve con velocidad V (SQE)> c en relación con el marco de referencia inercial y en cada interacción entre SQE s con otras partículas o campos, el valor de velocidad de SQE permanece constante; como en cada condición física que tenemos;

El principio SQE muestra que, en cada condición, la masa, la energía y la cantidad de velocidad de SQE permanecen constantes, y solo la velocidad de transmisión V (SQET) y la energía

de SQE se convierten a su velocidad de no transmisión V (SQES) y energía E (SQES), y viceversa. Entonces tenemos;

Velocidad de la luz

De acuerdo con el principio de Relatividad Especial, la velocidad de la luz en el vacío es constante e igual a c para todos los observadores de inercia, y es independiente de la fuente de luz. ¿Cómo podemos concluir este principio utilizando el principio de energía sub cuántica? Primero, de acuerdo con el principio de SQE (que también es el resultado del principio de gravitón), la cantidad de velocidad lineal de SQE depende de la interacción entre SQE y las otras partículas (o campos) en el medio. Entonces, en el vacío, el fotón (luz) no tiene interacción con otras partículas o campos fuera de la estructura del fotón (suponga que el efecto gravitacional del vacío es insignificante), por lo tanto, la velocidad lineal de los SQE en la estructura de los fotones es constante y igual a v (SQE) = c. Además, la velocidad lineal de los fotones virtuales en el vacío es la misma cantidad de c . En general, demostremos la velocidad de los fotones como

, cambia de un entorno a otro que en el vacío es c , significa que la velocidad de la luz en el vacío también es v (luz) = c. Así que eso:

Por lo tanto, la velocidad lineal del fotón depende de las condiciones ambientales. Igual que los gravitones y la energía sub cuántica, pero la cantidad total de velocidad de transmisión y velocidad de no transmisión del fotón es constante y es igual a v (luz), al cambiar las condiciones ambientales, como el fotón entra al agua, una parte de su velocidad lineal se convierte en velocidad no lineal y en este caso tenemos v (luz) <c. Entonces podemos escribir:

Como muestra el principio de la energía sub cuántica, la velocidad de transmisión total y la velocidad de no transmisión de SQE es siempre constante en relación con el marco de referencia inercial y es una propiedad intrínseca de la naturaleza, que también se ve afectada por el principio de gravitón, porque SQE de se hacen gravitones. Entonces, la cantidad de velocidad de transmisión (en este caso, velocidad lineal) de SQE es independiente de la fuente de luz del emisor.

Singularidad

Una singularidad gravitacional o singularidad espacio-temporal es una ubicación donde las cantidades que se utilizan para medir el campo gravitacional se vuelven infinitas de una manera que no depende del sistema de coordenadas. Estas cantidades son las curvaturas escalares invariantes del espacio-tiempo, que incluyen una medida de la densidad de la materia. Según la relatividad general, el estado inicial del universo, al comienzo del Big Bang, era una singularidad. Tanto la relatividad general como la mecánica cuántica se descomponen al describir el Big Bang. Mi pregunta es, si el universo se derrumba, ¿alcanzará una densidad infinita y un volumen cero? ¿O hay una fuerza que lo contrarreste?

Una nueva definición de singularidad.

Según la relatividad general, el estado inicial del universo, al comienzo del Big Bang, era una singularidad. Tanto la relatividad general como la mecánica cuántica se descomponen al describir el Big Bang. Mi pregunta es, si el universo se derrumba, ¿alcanzará una densidad infinita y un volumen cero? ¿O hay una fuerza que lo contrarreste?

En 1917, Einstein asumió: “el universo en su conjunto es estático, es decir, sus propiedades a gran escala no varían con el tiempo”.

En 1922, Friedmann demostró que existen soluciones en expansión que no tienen límites con la geometría hiperbólica. Las ecuaciones diferenciales que derivó fueron

Después de los descubrimientos del Hubble sobre la expansión del universo, la ecuación de Friedmann fue la siguiente:

En otras palabras, Friedmann planteó la posibilidad de un universo dinámico, que cambia de tamaño con el tiempo. De hecho, Friedmann introdujo la expresión “universo en expansión”.

En la década de 1990, las observaciones experimentales mostraron que la expansión del universo se está acelerando y que la energía oscura tiende a acelerar la expansión del universo.

De acuerdo con la teoría estándar del Big Bang, nuestro universo surgió como “singularidad”. ¿Qué es una “singularidad” y de dónde viene? Bueno, para ser sincero, no estamos seguros. Las singularidades son zonas que desafían nuestra comprensión actual de la física. Se cree que existen en el núcleo de los “agujeros negros”. Se cree que la presión es tan intensa que la materia finita se convierte en una densidad infinita (un concepto matemático que realmente aturde la mente). Estas zonas de densidad infinita se llaman ” singularidades ”. Se cree que nuestro universo comenzó como algo infinitesimalmente pequeño, infinitamente caliente, infinitamente denso, una singularidad. ¿De dónde vino? No lo sabemos ¿Por qué apareció? No lo sabemos

Para responder estas preguntas, pasemos por el agujero negro y lleguemos a la formación del agujero negro absoluto especificando los límites de la segunda ley de Newton y la ley de gravitación, luego la singularidad se explicará en la explosión de un agujero negro absoluto. De acuerdo con este enfoque en el estado de singularidad es: el volumen no será cero, la densidad será limitada.

Esta es solo una definición simple e intuitiva de un agujero negro absoluto, pero debemos definir un agujero negro absoluto utilizando los conceptos científicos y las ecuaciones cosmológicas y analizando sus resultados. Según la teoría CPH, la energía (también todas las partículas subatómicas) está formada por energía sub cuántica (SQE). La cantidad de velocidad V (SQE) de SQE es constante, pero las cantidades de velocidad de transmisión V (SQET) y velocidad de no transmisión V (SQES) no son constantes, al disminuir la cantidad de velocidad de transmisión de V (SQET) se agrega a la cantidad de velocidad de no transmisión V (SQES) y viceversa. Cada uno de estos valores es máximo cuando otro valor es cero dado por:

Por lo tanto, de acuerdo con la dirección de la fuerza externa que se vio afectada en una partícula / objeto, la velocidad total de las velocidades de no transmisión se convierte a las velocidades de transmisión o al inverso.

Ahora podemos definir un agujero negro absoluto. Pero antes de las explicaciones, es necesario definir dos términos de divergencia sub cuántica y convergencia sub cuántica;

1- Divergencia sub cuántica: Si una partícula / objeto cae en la gravedad hacia un cuerpo masivo, y la velocidad lineal de sus (SQEs) será V (SQET), decimos que el objeto tiene divergencia sub cuántica (Figura).

2- Convergencia sub cuántica: si las velocidades totales de transmisión de las SQE de una partícula / objeto van a cero, decimos que el objeto tiene convergencia sub cuántica (Figura). Entonces;

Divergencia y convergencia subcuántica

Definición de un agujero negro absoluto: Si una partícula / objeto cae en el agujero negro absoluto, estará involucrado en una divergencia sub cuántica antes de llegar a la superficie del agujero negro absoluto.

Considere el agujero negro absoluto tragando más materia; su masa y, por lo tanto, su intensidad de campo gravitacional aumentará. Al aumentar la masa, el volumen se reduce, sus SQEs constituyentes está condensado y su espacio de transición será limitado.

Definición de singularidad: Un agujero negro absoluto con una densidad muy alta en dos condiciones seguidas alcanza el estado de singularidad:

1) Sus SQEs constituyentes alcanzar el estado de convergencia sub cuántica. Entonces, la velocidad lineal de todo en la superficie del agujero negro absoluto va a cero,

2) Debido a la presión gravitacional, la distancia promedio entre SQEs de un agujero negro absoluto va a cero.

Están dispersos y estas dispersiones en cadena se extienden por todas partes dentro del agujero negro absoluto y, por lo tanto, se produce la singularidad. La densidad es muy alta en el estado de singularidad, pero no infinita. Además, el volumen no llega a cero, pero el promedio de la distancia entre los SQE llega a cero. Las descripciones anteriores pueden explicar fácilmente cómo contrarrestar la segunda ley y la gravedad de Newton.

Dados los temas anteriores, existen tres limitaciones básicas: velocidad de transmisión, velocidad de no transmisión y densidad, que son la razón de la creación del universo observable y todos los fenómenos físicos que existen en él.

Ahora, al usar la ecuación de Friedmann, se revisará el Big Bang.

El lado derecho de la ecuación de Friedman, ha dado espacio-tiempo real y se usa para después del Big Bang, porque k determinó las propiedades geométricas del espacio-tiempo yc es la velocidad de la luz en el vacío es constante, pero dado que el La velocidad de la luz no es constante en el campo gravitacional y es cero para la superficie y dentro de un agujero negro absoluto. Entonces, si queremos resolver la ecuación de Friedmann para el agujero negro absoluto, debemos considerar la velocidad de la luz a cero y la ecuación se convierte en la siguiente:

Suponiendo que R no es cero (lo cual es una suposición razonable porque la noción de que, si el universo colapsa, no desaparecerá el volumen y no es razonable que el universo se haya creado de la nada). Tomamos la raíz cuadrada de la ecuación anterior, por lo que tenemos:

Para t = 0 se obtiene el radio inicial del universo (en el momento del Big Bang).

La ecuación anterior es una función exponencial que se muestra en los primeros momentos después de la explosión, la expansión del universo fue muy rápida. Además, debido a la gran explosión, la segunda ley de Newton contrasta con la ley de la ley gravitacional, en esta confrontación, la segunda ley de Newton y la ley gravitacional universal se neutralizan. En los primeros momentos después del Big Bang, el límite de velocidad no era la velocidad de la luz c , porque los SQE chocan entre sí, todo, incluso los fotones se descompusieron y el límite de velocidad podría tener uno de los dos valores de velocidad SQE V (SQE). Entonces, podemos escribir:

La mecánica clásica y la relatividad (especial y general) describen que la aceleración es una explicación del exterior de los fenómenos, independientemente de las propiedades de las escalas sub cuánticas. Cabe señalar que la interacción entre objetos grandes (por ejemplo, colisión de dos cuerpos) bajo la acción de la capa cuántica (de hecho, la capa sub cuántica) realizada. En el nivel sub cuántico, la cantidad de velocidad es constante, en cualquier condición y en cualquier espacio, y en cualquier interacción, el momento lineal cambia a un momento no lineal y viceversa. Según SQE , podemos mostrar que no hay un volumen cero con densidad infinita en singularidad también antes del Big Bang.

Lee mas:

Revisión adaptativa de tres preguntas fundamentales en física

Making of Universe de Tiny Energy, incluidas características únicas

“La velocidad de la luz nunca se puede superar …” ¿por qué? ¿Con respecto a qué?

Hay información muy importante que queda fuera de esa declaración.

Lo explicaré:

¿Sabes cómo un pez puede nadar a máxima velocidad, pero puede ir mucho más rápido si queda atrapado en una corriente?

La regla real es que la velocidad de la luz en el vacío es la misma para todos los observadores.

El resultado de esto es que ningún observador puede viajar a través del espacio más rápido que la velocidad de la luz … más precisamente, ningún mensaje puede viajar más rápido que la luz a través del espacio.

Pero hay cosas que pueden “exceder la velocidad de la luz” … simplemente no se pueden usar para enviar un mensaje más rápido que la luz.

Por ejemplo … si tiene dos naves espaciales que viajan en direcciones opuestas a 3/4 de la velocidad de la luz, entonces la distancia entre ellas aumenta a 6/4 de velocidad de la luz … que es más rápido que la luz.

Por ejemplo … si haces brillar un puntero láser en la Luna, es fácil hacer que el punto láser cruce la Luna más rápido que la velocidad de la luz.

Del mismo modo, la velocidad relativa entre dos puntos en el espacio puede ser cualquier cosa … los objetos pueden estar en esos puntos, por lo que se separarían más rápido que la luz. Esto es consistente con la teoría de la relatividad general y la suposición de que la velocidad de la luz es invariable porque los objetos están “incrustados” en algo que se está expandiendo, no moviéndose a través de lo que se está expandiendo. mmmmm … no del todo así.

Hay un manual de Relatividad Especial y Viajes FTL ← este enlace.

En primer lugar, no lo hizo.

Bueno, más exactamente, “expansión” no se mide en metros por segundo, por lo que el término “expandirse más rápido que la velocidad de la luz” no tiene mucho sentido.

Probablemente se refiera a la idea de que existen caminos inerciales (es decir, geodésicas en el espacio-tiempo) cuyo cambio en la distancia invariante en función del tiempo de coordenadas es más rápido que la velocidad de la luz . Esto todavía ocurre ahora (como sucede siempre y cuando la “expansión” no sea cero), y no se limita al universo primitivo.

Esto no es sorprendente porque es un efecto de la relatividad general y la velocidad del límite de luz es un efecto local en la relatividad especial. Trataré de explicar esto sin ponerme demasiado técnico, pero uno no puede realmente sustituir un curso de relatividad y aprenderlo.

Probablemente hayas escuchado que la gravedad dobla el espacio en la relatividad general, por lo que el espacio se vuelve no euclidiano. Cuando aproxima una pequeña porción de ese espacio con un plano lineal y elige coordenadas ortogonales y normalizadas, entonces el término “velocidad de la luz” comienza a tener un efecto físico real además de ser solo un número. La relatividad especial solo funciona cuando su marco de referencia es euclidiano (bueno, está bien, el componente de tiempo de la métrica es negativo, pero es “recto” y no “curvo”) y ortogonal.

En relatividad general, puedo elegir las coordenadas que quiera y mi elección de coordenadas afecta la “velocidad de la luz”. Como analogía algo demasiado simple pero relevante, si elijo medir la velocidad de la luz en centímetros por segundo, ¡por supuesto que obtengo una respuesta numérica diferente!

Es completamente posible definir el tiempo de coordenadas de una manera que nunca se exceda la velocidad de la luz, pero simplemente elegimos definir el tiempo de una manera que se exceda la velocidad arbitraria de la luz solo porque es más simple modelar la expansión del universo de esa manera .

Esta acción es muy simple … y, sin embargo, la hacemos muy complicada.

Sáltate las matemáticas, entierra los meandros metafísicos …

Y para esta respuesta, omita todas las observaciones astronómicas y los estudios científicos cuánticos que respaldan el concepto. Confía en mí, esta es la mejor idea posible que tenemos de conciliar la observación con la teoría.

La ‘cosa’ en la que vivimos es el ESPACIO . Ah, contiene muchas cosas, energía, partículas, campos … pero, por sí mismo, no es un objeto físico. Tienes que imaginar un aspecto del espacio que es … bueno … no es nada, sino espacio .

Se puede expandir a cualquier velocidad, incluso más que la velocidad de la luz. (La teoría de la relatividad especial prohíbe que la materia o la información viajen a la velocidad de la luz o más).

Porque NADA se mueve.

Cuando tu amigo dice “adiós …” y comienza a bajar la manzana … el ESPACIO entre ustedes crece. Es así de simple … olvida a los dos seres humanos … esa es la causa … solo considera el espacio .

Una analogía más … o manipulación del lenguaje: los objetos lejanos no viajan desde nosotros; las imágenes de ellos se alejan de nuestra vista. Lo sé, suena un poco … trivial … pero solo piensa en la próxima vez que estés en un bar y la conversación se convierta en cosmología. ¡Serás el experto!

Si realmente desea contemplar un sueño … simplemente intente crear analogías o explicaciones para los efectos cuánticos …

Todavía lo hace. La pista es: no es la masa lo que se mueve, sino el espacio-tiempo. Según la Relatividad general, el espacio-tiempo teóricamente puede moverse a una velocidad infinita, y ciertamente sobre c , lo que hace. Sabemos con certeza que el universo se está expandiendo más rápido que la velocidad de la luz, porque tiene 13.8 mil millones de años, pero podemos ver a más de 93 mil millones de años de distancia. En los bordes de esa burbuja (el universo observable), el espacio se expande más rápido que la velocidad de la luz.

Considere una banda de goma con una hormiga. La velocidad máxima de la hormiga es c.

La hormiga corre de izquierda a derecha a la velocidad c, pero tiras de la banda muy rápido, de modo que los extremos de la banda de goma se separan con una velocidad igual a 10c.

La velocidad máxima de la hormiga en una banda de goma sigue siendo c.

More Interesting

¿Sería todo estático a nuestro alrededor si pudiéramos viajar a la velocidad de la luz?

¿Cuál es la relación entre la gravedad, el tiempo y la velocidad de la luz?

Si la velocidad de la luz es independiente del marco de referencia, ¿por qué es posible el cambio de luz roja / azul (efecto Doppler)?

En realidad, a excepción de las partículas subatómicas y atómicas, ¿qué viaja cerca de la velocidad de la luz?

¿La información cuántica es más rápida que la velocidad de la luz?

Si un objeto puede viajar más rápido que la velocidad de la luz. ¿Existe la posibilidad de que el objeto viaje en el tiempo?

¿Viajará la luz para siempre en el espacio si no hay obstáculos en su camino?

¿Cuál es el punto más alejado del espacio que conocemos? ¿A cuántos años luz de distancia está ese punto?

¿Qué suposición y / o hecho físico causan la constancia de la velocidad de la luz en las ecuaciones / teoría de Maxwell?

Si la velocidad negativa fuera posible, ¿qué significaría matemáticamente?

¿Puedo cambiar de dirección mientras viajo a la velocidad de la luz?

¿Por qué decimos que el tiempo se detiene a la velocidad de la luz cuando, de hecho, los fotones experimentan 1 espacio de luz por segundo?

¿Es posible aumentar o disminuir la velocidad de la luz?

¿Por qué la materia o la información no pueden viajar más rápido que 299792458 metros por segundo?

¿Cómo puede una persona viajar en el futuro yendo a velocidades cercanas a la luz? Dado que la velocidad es relativa, ¿no debería pasar el tiempo lentamente en la Tierra como lo ve el viajero y, por lo tanto, viceversa para las personas en la Tierra?